Pattern generation for multi-class LAD using iterative genetic algorithm with flexible chromosomes and multiple populations

نویسندگان

  • Hwang Ho Kim
  • Jin Young Choi
چکیده

In this paper, we consider a pattern generation method for multi-class classification using logical analysis of data (LAD). Specifically, we apply two decomposition approaches—one versus all, and one versus one— to multi-class classification problems, and develop an efficient iterative genetic algorithm with flexible chromosomes and multiple populations (IGA-FCMP). The suggested algorithm has two control parameters for improving the classification accuracy of the generated patterns: (i) the number of patterns to select at the termination of the genetic procedure; and (ii) the number of times that an observation is covered by some patterns until it is omitted from further consideration. By using six well-known datasets available from the UCI machine-learning repository, we performed a numerical experiment to show the superiority of the IGA-FCMP over existing multi-class LAD and other supervised learning algorithms, in terms of the classification accuracy. 2014 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Multi-objective Optimal Power Flow Using Modified GA and PSO Based on Hybrid Algorithm

The Optimal Power Flow (OPF) is one of the most important issues in the power systems. Due to the complexity and discontinuity of some parameters of power systems, the classic mathematical methods are not proper for this problem. In this paper, the objective function of OPF is formulated to minimize the power losses of transmission grid and the cost of energy generation and improve the voltage ...

متن کامل

LAGA: A Software for Landscape Allocation using Genetic Algorithm

In this paper, Landscape Allocation using Genetic Algorithm (LAGA), a spatial multi-objective land use optimization software is introduced. The software helps in searching for optimal land use when multiple objectives such as suitability, area, cohesion and edge density indices are simultaneously involved. LAGA is a flexible and easy to use genetic algorithm-based software for optimizing the sp...

متن کامل

Negative Selection Based Data Classification with Flexible Boundaries

One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...

متن کامل

Solving Flexible Job Shop Scheduling with Multi Objective Approach

  In this paper flexible job-shop scheduling problem (FJSP) is studied in the case of optimizing different contradictory objectives consisting of: (1) minimizing makespan, (2) minimizing total workload, and (3) minimizing workload of the most loaded machine. As the problem belongs to the class of NP-Hard problems, a new hybrid genetic algorithm is proposed to obtain a large set of Pareto-optima...

متن کامل

Optimization of Agricultural BMPs Using a Parallel Computing Based Multi-Objective Optimization Algorithm

Beneficial Management Practices (BMPs) are important measures for reducing agricultural non-point source (NPS) pollution. However, selection of BMPs for placement in a watershed requires optimizing available resources to maximize possible water quality benefits. Due to its iterative nature, the optimization typically takes a long time to achieve the BMP trade-off results which is not desirable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2015